Is there a solution to the equation $\mathrm{e}^{\wedge} \mathrm{x}=-2$

I did a lot of original research on this concept and I discovered that exponential curves are not just the usual curve we all know about...

Here is the basic $\mathbf{y}=\mathbf{e}^{\mathbf{x}}$

I will just "cut to the chase" and show you what I discovered.

There is a whole set of graphs represented by $\mathbf{y}=\mathbf{e}^{\wedge} \mathbf{x}$

I used only real y values but I allowed only those complex x values which produce real y values.

I marked the plane $\mathbf{y}=\mathbf{- 2}$ and the yellow dots are where $\mathbf{e}^{\wedge} \mathbf{x}=\mathbf{- 2}$
The x values are approximately $\mathrm{x}=0.69 \pm \pi \mathrm{i}, 0.69 \pm 3 \pi \mathrm{i}, 0.69 \pm 5 \pi \mathrm{i}$ etc
You can see how this graph was found in my website... www.phantomgraphs.weebly.com

